NGINEERING |
SRACTICES:. =
WSEOR TEAM * +
“FFECTIVENESS _

R

Scrum does not talk about — So, how do we get
any Engineering practices oy the work done?

----- Become a Jedi master, use the force to start

S 5-‘ the sprint, commit to the work and magically
""" make it appear

o (Q«u

 Assumption 2:

S ‘As a team’ begin work Coms o realze et gooe B
S in an agile manner Engineering practicesare T
SRR . essential to becoming a high RERES
>65a0 - performing feam facaoc

Ll AGILONOMICS.COM



Solution (What to do?)

Intfroduce key engineering practices to scrum

Test Driven Continuous : ) Automated
Development Integration and Refactoring Pair Programming Integration and
(TDD) more frequent (PP) Acceptance tests
check-ins (CI)

Test Driven

Development
(TDD)

What is TDD?

® Not a testing process

e As/w design technique where the
code is developed in short cycles

¢ 3 state process — Red, Green,
Refactor

What are the Advantages of TDD?
® Best choice for meeting sprint

goals at a high velocity

® Each automated test builds on the
next, forming a safety net of

automated unit tests




TDD - How it works

Development
continues

Add a Test

Run all Test

Make a little change

Run all Test

Test Driven Development (TDD)
Advantages (contd.)

e Ateam choosing to use the high wire act with TDD safety

net can recover easily/fast from failures. Otherwise, it

could take days, maybe weeks, to recover

e Team feels confident even with requests for last minute

(emergency) changes
® More code is written when using TDD, but, total reduction
in debugging time makes up more than enough for the

extra code/time

e Gives the team peace of mind (priceless)



Refactoring

The act of enhancing or improving the
design of existing code without changing
its intent or behavior.

= public abstract class ibstractCollection implements Collection {
3 Fmbh’c void addAll{kbstractCollection ¢ {

if (¢ instanceof Set| ()
Set 3 = (Set)c; )
The external behavior remains the same, for (i 120, 4/< 2.2128(); 00 (| Duplicated
i i if [lcontaing(s.getElementAtii)] { ‘ Code
while under the hood, things are more (RIS /
. Duplicated
streamlined. U > | e
{} eise if [c instanceof List) |{ L
List 1 = {List)e: : } )
Tor (int i=0; i < lL.size(): i+ {; Alternative Classes
if ['ran:alnsi'..g::[ljgl,‘ { { with

add(l.get (i)} Different Interfaces

® \When the code smells

1

® |[f it stinks, change it ©

. Switch Statement

® A code smell is seemingly small issue but has I o el n—
. . add (@ keya[i], m.values[i));{~ Inappropriate Intimacy
symptoms of becoming big ) —
— Long Method

Jeff Atwood lists some common smells in a 2006 blog post

SYMPTOMS PROBLEM

There's a fine line between comments that illuminate and comments that obscure.

Are the comments necessary? Do they explain “why" and not “what"? Can you refactor the
code, so the comments aren't required? And remember, you're writing commments for people,
not machines.

Comments

All other things being equal, a shorter method is easier to read, easier to understand, and easier

Long (MSEE to trouble-shoot. Refactor long methods into smaller methods if you can.

Pick a set of standard terminology and stick to it throughout your methods. For example, if you

| i N
neonsistenE have open(), you should probably have closec().

Robert Martin’s ‘SOLID’ principle for OOD

PRINCIPLES DESCRIPTION

SRP: Single Responsibility Principle A class should have one, and only one, reason to change.

OCP: the Open Closed

e You should be able to extend a class's behavior, without modifying it.
Principle

LSP: the Liskov

SubstitutioniEE T Derived classes must be substitutable for their base classes.

ISP: Interface

Segregation Bl ake fine-grained interfaces that are client specific

DIP: The Dependency Inversion Principle Depend on abstractions, not on concretions.




e Anytime during the code lifecycle
o When someone sees a piece of code that can be improved
o During legacy work

o When bugs pop out from a section of code

® Boftom-line, anytime the code smells

e Refactor does not mean to re-write the code, but just to optimize to
good coding practices

Continuous
Integration &
frequent
check-ins (CI)

e Clis a software development
practice which requires feam
members to intfegrate their
work frequently, with usually
each member integrating at
least once/day

e This results in multiple
integrations every day

e Every intfegration is verified by
an automatic build with test to SOURCE
detect any infegration errors - CONTROL

® Provides quicker feedback @

loops on the code DEVELOP BUILD

e Team members are k @
encouraged fo check in the

code of 100 lines or less (way TEST
different than traditional check
in of 1000 lines or more)




CONTINUOUS
INTEGRATION &
FREQUENT
CHECK-INS (ClI)

ADVANTAGES

Cl DAY TO DAY
ANALOGY

Cl shines a light down the path of code
development so that you can know if you'll Car Headlights at night
hit something (warns about blockages)

Cl reduces all (or most) manual processes.
Not only does this free up time and Washing Machines
resources, it also helps improve quality.

Cl provides visibility into the system under
development - Current / next locations.
Enables the team and the PO to react in

real time.

CONCLUSION

e Scrum holds the expectation — at sprint end, all code should be potentially shippable

GPS

(Teams struggle with what that really means)
e Continuous intfegration enables teams to build and release at any fime
e With discipline, continuous integration can take a Scrum team from somewhat good to

|ust plain awesome

Enjoyed This Resource? Check Out

Learn How to Implement

These Strategies with Our @ agilonomics.com
Professional Training



https://agilonomics.com/

