
Assumption 1:

Assumption 2:

Become a Jedi master, use the force to start
the sprint, commit to the work and magically
make it appear

Come to realize that good
Engineering practices are
essential to becoming a high
performing team

‘As a team’ begin work
in an agile manner

So, how do we get
the work done?

Scrum does not talk about
any Engineering practices

Scrum and Engineering practices

AGILONOMICS.COM

What are the Advantages of TDD?
Best choice for meeting sprint
goals at a high velocity

Each automated test builds on the
next, forming a safety net of
automated unit tests

Test Driven
Development
(TDD)
What is TDD?

Not a testing process

A s/w design technique where the
code is developed in short cycles

3 state process – Red, Green,
Refactor

Add a Test

pass

fail

fail

pass

refactor

pass

Run all Test

Make a little change

Run all Test

Development
continues

TDD – How it works

Test Driven Development (TDD)
Advantages (contd.)

A team choosing to use the high wire act with TDD safety
net can recover easily/fast from failures. Otherwise, it
could take days, maybe weeks, to recover

Team feels confident even with requests for last minute
(emergency) changes

More code is written when using TDD, but, total reduction
in debugging time makes up more than enough for the
extra code/time

Gives the team peace of mind (priceless)

SYMPTOMS PROBLEM

Comments

There's a fine line between comments that illuminate and comments that obscure.
Are the comments necessary? Do they explain “why” and not “what”? Can you refactor the
code, so the comments aren't required? And remember, you're writing comments for people,
not machines.

Long Method
All other things being equal, a shorter method is easier to read, easier to understand, and easier
to trouble-shoot. Refactor long methods into smaller methods if you can.

Inconsistent Names
Pick a set of standard terminology and stick to it throughout your methods. For example, if you
have open(), you should probably have closec().

PRINCIPLES DESCRIPTION

SRP: Single Responsibility Principle A class should have one, and only one, reason to change.

OCP: the Open Closed
Principle

You should be able to extend a class's behavior, without modifying it.

LSP: the Liskov
Substitution Principle

Derived classes must be substitutable for their base classes.

ISP: Interface
Segregation Principle

Make fine-grained interfaces that are client specific.

DIP: The Dependency Inversion Principle Depend on abstractions, not on concretions.

Refactoring
The act of enhancing or improving the
design of existing code without changing
its intent or behavior.

The external behavior remains the same,
while under the hood, things are more
streamlined.

When is Refactoring needed?
When the code smells
If it stinks, change it ☺
A code smell is seemingly small issue but has
symptoms of becoming big

Jeff Atwood lists some common smells in a 2006 blog post

Robert Martin’s ‘SOLID’ principle for OOD

SOURCE
CONTROL

BUILD

TEST

DEVELOP

Continuous
Integration &
frequent
check-ins (CI)

CI is a software development
practice which requires team
members to integrate their
work frequently, with usually
each member integrating at
least once/day

This results in multiple
integrations every day

Every integration is verified by
an automatic build with test to
detect any integration errors

Provides quicker feedback
loops on the code

Team members are
encouraged to check in the
code of 100 lines or less (way
different than traditional check
in of 1000 lines or more)

CI DAY TO DAY
ANALOGY

CI shines a light down the path of code
development so that you can know if you’ll

hit something (warns about blockages)
Car Headlights at night

CI reduces all (or most) manual processes.
Not only does this free up time and

resources, it also helps improve quality.
Washing Machines

CI provides visibility into the system under
development – Current / next locations.
Enables the team and the PO to react in

real time.

GPS

CONTINUOUS
INTEGRATION &
FREQUENT
CHECK-INS (CI)

ADVANTAGES

CONCLUSION

Enjoyed This Resource? Check Out

agilonomics.com
Learn How to Implement
These Strategies with Our
Professional Training

Scrum holds the expectation – at sprint end, all code should be potentially shippable
 (Teams struggle with what that really means)

Continuous integration enables teams to build and release at any time
With discipline, continuous integration can take a Scrum team from somewhat good to
just plain awesome

https://agilonomics.com/

